Using Expected Value to Make Investment Decisions

Daniel Kahneman, a professor at Princeton University, became the first psychologist to win the Nobel Prize in Economic Sciences The prize was aw arded for his "prospect theory" about investors' "illusion of control."

EXAMPLE 5 Using Expected Value

Analyze the mathematics in the following description of Daniel Kahneman and Amos Tversky's "Prospect Theory: An Analysis of Decision under Risk."

Abstract

"A problem is positively framed when the options at hand generally have a perceived probability to result in a positive outcome. Negative framing occurs when the perceived probability weighs over into a negative outcome scenario. In one of Kahneman and Tversky's (1979) experiments, the participants were to choose one of two scenarios, an 80% possibility to win \$4,000 and the 20% risk of not winning anything as opposed to a 100% possibility of winning $\$ 3,000$. Although the riskier choice had a higher expected value ($\$ 4,000 \times 0.8=\$ 3,200$), 80% of the participants chose the safe $\$ 3,000$. When participants had to choose between an 80% possibility to lose $\$ 4,000$ and the 20% risk of not losing anything as one scenario, and a 100% possibility of losing $\$ 3,000$ as the other scenario, 92% of the participants picked the gambling scenario. This framing effect, as described in . . . Prospect Theory, occurs because individuals over-weigh losses when they are described as definitive, as opposed to situations where they are described as possible. This is done even though a rational economical evaluation of the two situations lead to identical expected value. People tend to fear losses more than they value gains. A $\$ 1$ loss is more painful than the pleasure of a $\$ 1$ gain."

Johan Ginyard

SOLUTION

Here are the first two options the participants were given.
Expected Value
Option 1: 80% chance of gaining $\$ 4000$ 20% chance of gaining $\$ 0$
Option 2: 100% chance of gaining $\$ 3000$

$$
(0.8)(4000)+(0.2)(0)=\$ 3200
$$

$$
(1.0)(3000)=\$ 3000
$$

Here are the second two options the participants were given.

Option 1: 80% chance of losing $\$ 4000$ 20% chance of losing \$0

Greater expected value

Option 2: 100% chance of losing $\$ 3000$

Expected Value

$(0.8)(-4000)+(0.2)(0)=-\$ 3200$
$(1.0)(-3000)=-\$ 3000$

What Kahneman and Tversky found surprising was that in neither case did the participants intuitively choose the option with the greater expected value.

Checkpoint

Help at Math.andYOU.com

Describe other situations in which people fear losses more than they value gains.

