Chapter 1 Summary

	Section Objectives		How does it apply to you?
Section 1	Use the order of operations to evaluate a numerical expression.		You need to know the order of operations to do calculations properly in your daily life. (<i>See Examples 1 and 2.</i>)
	Use a calculator to evaluate a numerical expression.		To get an accurate answer, you must use the correct keystroke sequence when using a calculator. (<i>See Example 3.</i>)
	Use the order of operations to evaluate a formula.		You will use common formulas many times throughout your life. (<i>See Examples 4, 5, and 6.</i>)
Section 2	Round numbers in a real-life context.		Using "exact" numbers is often unreasonable. It is usually reasonable to round numbers according to the context. <i>(See Examples 1 and 2.)</i>
	Read large and small numbers.		Large and small numbers are often written in <i>scientific</i> or <i>exponential notation</i> . (<i>See Examples 3 and 4.</i>)
	Understand the concept of "garbage in, garbage out."		When answering a question, remember that the accuracy of the output is only as good as the accuracy of the input. <i>(See Examples 5 and 6.)</i>
Section 3	Understand and find a percent of a number.		Percents are everywhere. You need to have a firm grasp of percents to make sense of today's world. (<i>See Examples 1 and 2.</i>)
	Determine what percent one number is of another number.		Percent can be used to compare two numbers in the same context. (See Examples 3 and 4.)
	Use percent to represent change.		Percent can be used to describe the amount that a quantity changes over time. <i>(See Examples 5 and 6.)</i>
Section 4	Use unit analysis to "balance" both sides of a formula.		Everything you measure has a number with some sort of unit of measure attached. (<i>See Examples 1 and 2.</i>)
	Convert within a given system of measure.		You need to know how to compare units. (See Examples 3 and 4.)
	Convert between different systems of measure.		Two systems of measure are used in the United States. You need to know how to compare units. (<i>See Examples 5 and 6.</i>)