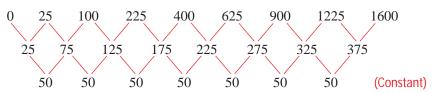
EXAMPLE 4

Describing Lift for Airplanes

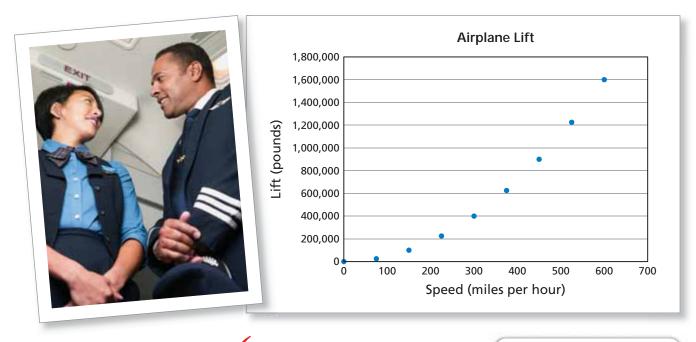
For a given wing area, the lift of an airplane (or a bird) is proportional to the square of its speed. The table shows the lifts for a Boeing 737 airplane at various speeds.

Speed (mph)	0	75	150	225	300	375	450	525	600
Lift (1000s of lb)	0	25	100	225	400	625	900	1225	1600



- **a.** Is the pattern of the lifts quadratic? Why?
- **b.** Sketch a graph to show how the lift increases as the speed increases.

The Boeing 737 is the most widely used commercial jet in the world. It represents more than 25% of the world's fleet of large commercial jet aircraft.


SOLUTION

a. Begin by finding the second differences of the lifts.

Because the second differences are constant, the pattern is quadratic.

b. Notice that as the speed increases, the lift increases quadratically.

Checkpoint

Help at *Math.*and**Y@U.com**

A Boeing 737 weighs about 100,000 pounds at takeoff.

- **c.** Estimate how fast the plane must travel to get enough lift to take flight.
- d. Explain why bigger planes need longer runways.