Recognizing a Proportional Pattern

A pattern with two variables is **proportional** when one of the variables is a constant multiple of the other variable. Proportional patterns are also linear.

EXAMPLE 5 Recognizing a Proportional Pattern

You hang different weights from a spring. You then measure the distance the spring stretches.

- **a.** Describe the pattern. Is the distance the spring stretches proportional to the weight?
- **b.** How much does the spring stretch when you hang 6 pounds from it?

SOLUTION

a. You can see that the distance the spring stretches is 3/2 times the weight in pounds.

So, the distance the spring stretches *is* proportional to the weight.

b. When you hang 6 pounds from the spring, it will stretch $(3/2 \times 6)$, or 9 inches.

Checkpoint

Help at *Math.andYOU.com*

The distance that a spring stretches depends on its elasticity. Data for a different spring are shown in the table.

- c. Is this spring more or less elastic than the spring in Example 5? Explain.
- d. How much will this spring stretch when you hang 7 pounds from it?

Throughout human history, most discoveries have occurred because humans observed patterns. From the patterns, they then formulated laws of nature. The law illustrated in Example 5 is called *Hooke's Law*, after the English scientist Robert Hooke. The law states that the distance a spring stretches is proportional to the weight hanging on the spring.

Weight (pounds)	Distance stretched (inches)
0	0
1	$\frac{3}{4}$
2	$\frac{3}{2}$
3	$\frac{9}{4}$
4	3