7.1 Linear Patterns

- Recognize and describe a linear pattern.
- Use a linear pattern to predict a future event.
- Recognize a proportional pattern.

Study Tip

Linear patterns involving two variables are called linear because when one variable is graphed in relationship to the other variable, the result is a line.

Recognizing a Linear Pattern

A sequence of numbers has a linear pattern when each successive number increases (or decreases) by the same amount.

EXAMPLE 1 Recognizing a Linear Pattern

Anthropologists use tables like those at the left to estimate the height of a person based on part of the person's skeleton.
a. Does the table relating the length of a man's femur (upper leg bone) to the man's height represent a linear pattern?
b. The femur length of a Roman soldier is 18 inches. What was the height of the Roman soldier?

SOLUTION

a. To determine whether the table represents a linear pattern, find the differences
between consecutive terms.

DATA	A	B
1	Femur Length (in.)	Height (in.)
2	14	58.32
3	15	60.20
4	16	62.08
5	17	63.96
6	18	65.84

Each time the femur length increases by 1 inch, the height of the man increases by 1.88 inches. So, the pattern is linear.

b. From the table, an 18 -inch femur corresponds to a height of about 66 inches. In other words, the Roman soldier was about 5 ' 6 ".

Checkpoint

Help at Math.andY@U.com
For women, femur length and height are related as follows.
Height in inches $=1.95($ femur length $)+28.7$
c. Use a spreadsheet to make a table for this formula.
d. Use the spreadsheet to graph the data in the table and verify that the points on the graph lie on a line.

