Extending Concepts

Logistic Growth In general, the size of a population (people, bacteria, cancer cells, etc.) follows a logistic growth pattern. The graph illustrates the growth patterns of a logistic curve. In Exercises 21–23, use the graph.

- **21.** Compare an exponential curve to a logistic curve.
- **22.** Why is the size of a population over time better represented by a logistic growth model than an exponential growth model?
- **23.** Based on the information in the table, what part of the graph represents the world population? Explain.

Year	World Population (in billions)	Annual Growth Rate
1980	4.5	1.8%
1985	4.9	1.7%
1990	5.3	1.6%
1995	5.7	1.4%
2010	6.9	1.1%

24. Example 6 To find the annual growth rate represented by Moore's Law, use the formula for exponential growth, $A = P(1 + r)^n$. Because the number of transistors doubles every 2 years, you can substitute 2P for A and 2 for n in the formula. Then solve for r as shown. Suppose the number of transistors triples every two years. What is the annual growth rate?

$A = P(1+r)^n$	Formula for exponential growth
$2P = P(1+r)^2$	Substitute 2P for A and 2 for n.
$\frac{2P}{P} = \frac{P(1+r)^2}{P}$	Divide both sides by P.
$2 = (1+r)^2$	Simplify.
$\sqrt{2} = 1 + r$	Take the square root of each side.
$\sqrt{2} - 1 = r$	Subtract 1 from each side.

Year	Tuition
1	\$6200.00
3	\$8252.20

Tuition In Exercises 25 and 26, use the table.

- **25.** What is the annual growth rate of tuition?
- **26.** At this rate, what will tuition be in three more years?