The ancient Greeks were able to prove that the square root of 2 cannot be represented by a fraction like 707/500. They were also able to construct a line segment with a length of exactly $\sqrt{ } 2$ units. To do this, draw a square with side lengths of 1 unit. Using the Pythagorean Theorem, it follows that the length of each diagonal of the square is $\sqrt{2}$ units.

Study Tip

Here are the first 201 digits of the square root of 2 .
1.41421356237309504880 16887242096980785696 71875376948073176679 73799073247846210703 88503875343276415727 35013846230912297024 92483605585073721264 41214970999358314132 22665927505592755799 95050115278206057147

EXAMPLE 6 Finding an Exponential Growth Rate

Moore's Law states that the number of transistors that can be placed inexpensively on an integrated circuit will double every two years (see Example 4 on page 155). What is the annual rate of growth represented by Moore's Law?

SOLUTION

As it turns out, the answer to this question has a fascinating history in mathematics. The question comes down to this: Can you find a number whose square is 2 ?

Square Root of 2

The answer is denoted by $\sqrt{2}$, which is approximately 1.414213562 . So, the annual rate of growth for Moore's Law is about 41.42%.

Notice that the graph is similar to the graph obtained in Example 4 on page 155.

Checkpoint

Help at Math.andYOU.com

Using an initial value of 29,000 in 1978 and an annual growth rate of 41.42%, how many transistors could be placed on an integrated circuit in 2010?

