

Study Tip

The integer *b* tells you how many places to move the decimal point in the number *a*.

Positive exponent: Move right $5.1 \times 10^8 = 51000000.$

Negative exponent: Move left $2.4 \times 10^{-8} = 0.000000024$

Reading Large and Small Numbers

When numbers are too large or too small to be conveniently written in standard decimal notation, most calculators switch to *scientific* or *exponential notation*.

Exponential Notation

In **exponential notation**, numbers are written as *a* times a power of 10,

 $a \times 10^{b}$

where *a* is at least 1 and less than 10, and *b* is an integer. Here are two examples.

Standard Decimal Notation 6,830,000,000 0.000000000683 Exponential Notation 6.83×10^9 6.83×10^{-11}

EXAMPLE 3 Describing Large and Small Numbers

Describe the numbers in the article about bacteria.

It is estimated that 500 to 1000 species of bacteria live in the human digestive system and a roughly similar number live on the skin. Bacteria cells are much smaller than human cells (typically 3×10^{-6} meter in length), and there are at least 10 times as many bacteria as human cells in the body (approximately 10^{14} versus 10^{13}). There are approximately 5×10^{30} bacteria on Earth.

SOLUTION

Length of a bacteria cell: 3×10^{-6} meter = 0.000003 meter 3 millionths Number of bacteria in a human: 10^{14} bacteria = 100,000,000,000 bacteria 100 trillion Number of human cells in a human: 10^{13} cells = 10,000,000,000 cells 10 trillion Number of bacteria on Earth: 5×10^{30} bacteria

= 5,000,000,000,000,000,000,000,000,000 bacteria

Checkpoint

Help at Math.andYOU.com

The diameter of a virus is less than 3×10^{-8} meter. Write this number in standard decimal notation and describe it in words. Which is larger, a bacteria or a virus?

