Study Tip

The integer b tells you how many places to move the decimal point in the number a.
Positive exponent:
Move right
$5.1 \times 10^{8}=510000000$
Negative exponent:
Move left
$2.4 \times 10^{-8}=0.000000024$

Reading Large and Small Numbers

When numbers are too large or too small to be conveniently written in standard decimal notation, most calculators switch to scientific or exponential notation.

Exponential Notation

In exponential notation, numbers are written as a times a power of 10,

$$
a \times 10^{b}
$$

where a is at least 1 and less than 10 , and b is an integer. Here are two examples.

Standard Decimal Notation
6,830,000,000
0.0000000000683

Exponential Notation

6.83×10^{9}
6.83×10^{-11}

EXAMPLE 3 Describing Large and Small Numbers

Describe the numbers in the article about bacteria.

It is estimated that 500 to 1000 species of bacteria live in the human digestive system and a roughly similar number live on the skin. Bacteria cells are much smaller than human cells (typically 3×10^{-6} meter in length), and there are at least 10 times as many bacteria as human cells in the body (approximately 10^{14} versus 10^{13}). There are approximately 5×10^{30} bacteria on Earth.

SOLUTION

Length of a bacteria cell:

$$
3 \times 10^{-6} \text { meter }=0.000003 \text { meter } \quad 3 \text { millionths }
$$

Number of bacteria in a human:
10^{14} bacteria $=100,000,000,000,000$ bacteria
100 trillion
Number of human cells in a human:
10^{13} cells $=10,000,000,000,000$ cells
10 trillion
Number of bacteria on Earth:
5×10^{30} bacteria

$$
=5,000,000,000,000,000,000,000,000,000,000 \text { bacteria }
$$

Checkpoint

Help at Math.andYOU.com
The diameter of a virus is less than 3×10^{-8} meter. Write this number in standard decimal notation and describe it in words. Which is larger, a bacteria or a virus?

